
Work and Power Notes and Projectile Motion Practice Problems

		Nan	ne:	Hr
Work = fo	sferred by a force acti	$\mathbf{W} = \mathbf{F} \mathbf{d}$		
			Unit : <u>Newton-meter (N·m)</u>	also known as a Joule (J)
Fill in Unit Box:	Units of F = Units of d = Units of work = $1 \text{ N} \cdot \text{m} = 1$			

#1: Sam lifts a 34- kg rock upward a distance of 1.5 meters to impress his girlfriend. How much work did he do? To find F use F = ma with $a = -9.8 \text{ m/s}^2$.(ans. -499.8 J, it is negative because he is doing work against gravity)

*The only work done is that in the direction of motion!

#2: A child pulls a sled with a force of 50 N. If the rope makes a 30° angle with the ground, and she pulls it 2 meters, how much work is done? Because the sled will move in the x direction, it is only the x component of the force that counts. 50 Newtons is vector F. Use cosine to find the x component and multiply by the distance. (ans. 86.6 J)

#4 One of the world's strongest men carries a 904-pound motorcycle a distance of 30 m. If he does this in 17.25 seconds, what is his **horsepower**? (ans. -9.4 hp) Hint: Use F = ma to find the force with $a = -9.8 \text{ m/s}^2$ since he is lifting it against gravity, then find watts to turn into horsepower.

Unit VI) Work and Energy

W = F d P = \underline{W} P = \underline{Fd} 1 hp = 746 Watts Δt Δt

Problems for Work and Power:

1. a. A tugboat pulls a ship with 5.0 x 10³ N. How much work is done if it is pulled 3.0 km? (ans. 1.5 x 10⁷ J) <u>Given</u>:

<u>Unknown</u>: <u>Equation</u>:

b. Calculate the tugboat's power if it does this in 0.3 hour. (ans. 1.39 x 10⁴ W)

2. A shopper pulls a shopping cart with 35 N of force at a 25° angle to the horizontal. Find the work done as the shopper walks 50 meters down the aisle. (ans. 1,585 Nm or J)

3. In 4.2 seconds, a crane lifts a 225-lb bucket of soil up 21 ft. (1 meter = 3.28 ft). Calculate the work the crane performs <u>and</u> its horsepower. (-6416 Nm or J & -2.055 hp)

4. A 1,500-kg car accelerates from 0 to 10.0 m/s in 3.00 seconds. What is the horsepower delivered by the engine during the acceleration? (about 33.5 hp, Hint: This is a multi-stepped problem which involves 1-D Motion. You will need to solve for the acceleration and the distance, then W, P, and hp...Wow!)

Extra Practice Problems for Projectile Motion

We will be combining Work/Energy with Projectile Motion!

1. A shiny new sports car sits in the parking lot of a car dealership. Above is a cargo plane, flying horizontally at 40 m/s. At the exact moment the plane is 125 m directly above the car, a heavy crate accidentally falls from its cargo doors. Relative to the car, where will the crate hit? (ans. approx. 202 m)

<u>Sketch:</u> <u>Given</u>: <u>Horizontal</u>: <u>Vertical</u>:

2. A skier goes off a ramp with a velocity of 20 m/s at 40° N of E.

а.	What will his maximum height	be off the gro	und? (ans. approx. 8.4 m	ı)
<u>Sketch</u> :		<u>Given</u> :	<u>Horizontal</u> :	<u>Vertical</u> :

b. How far away will he land? (ans. approx. 40 meters)

The Horsepower Lab and Problems

10 pts, due _____

Name: _____

Hr.

The Horsepower Mini Lab

The world's strongest man can work at a horsepower of ______

Working in groups of 2 or 3, choose any <u>3 activities</u> from the following list:lift a weightjump ropeRunning up/down flight of stairsstep aerobics (up and down 1 stair)sit-upspush-ups (on your knees or regular ones)climb stairsjumping jacks

Data: ***YOU MUST SHOW YOUR WORK IN THE BOXES OR YOU WILL LOSE POINTS!***

<u>Do each activity for **one minute.**</u> Record the force, the distance and the time required below. After you finish with the activities, complete the calculations and answer the questions.

Activity-	#1	#2	#3
Time (total) (sec)			
Distance (total) (Use total distance covered)			
Force (total) F= m x a			

Now calculate the work and the power needed for each of the above activities. Show your work!

Work W = F x d		
Dowon		
$\begin{array}{c} \textbf{Power} \\ P = W/\Delta t \\ Or \end{array}$		
$\mathbf{P} = \mathbf{F} \mathbf{x} \mathbf{d} / \Delta \mathbf{t}$		
Your horsepower:		

James Watt came up with a calculation of horsepower by watching a horse pull a grinder around a circle. He found it to be 33,000 lb·ft/min. Change this to our units of watts ($N \cdot m/sec$) using dimensional analysis. (1 N = 0.225 lb)